C.U.SHAH UNIVERSITY

Winter Examination-2015

Subject Name: Engineering Mathematics-II

Subject Code: 4TE02EMT1 Branch: B.Tech(All) Semester: II Date: 19/11/2015

Time: 10:30 To 1:30 Marks: 70

Instructions:

(1) Use of Programmable calculator & any other electronic instrument is prohibited.

- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) A square matrix A is called orthogonal if
- (a) $AA^{-1} = I$ (b) $A^2 = A$ (c) $A^T = A^{-1}$ (d) $A^2 = I$
- **b)** A $n \times n$ Non-Homogeneous system of equations AX = B is given. If $\rho(A) = \rho(A:B) = n$ then the system has
 - (a) No solutions

(b) Unique solutions

(c) Infinite solution

- (d) None of these
- c) The rank of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is
 - (a) 1
- (b) 2 (c) 3
- **d**) The Sum of the eigenvalues of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
 - (a) 1
- (b) 4
- (c) 2 (d) 5
- e) Find the value of $\begin{vmatrix} 1 & 2 & 3 \\ 0 & -2 & 3 \\ 1 & 0 & 0 \end{vmatrix} = \underline{\qquad}$
 - (a) 1

- (d) 0
- **f)** A square matrix A is called Singular if
 - (a) |A| = 0 (b) $A^2 = A$ (c) $AA^T = I$ (d) $|A| \neq 0$

- **g**) $\int_{-\pi/2}^{\pi/2} \sin^7 x \ dx = \underline{\hspace{1cm}}$

- (a) 0 (b) 1 (c) $\frac{\pi}{2}$ (d) $\frac{1}{2}$

i)
$$\int_{0}^{1} \int_{0}^{x} dy \ dx =$$

- (a) $\frac{1}{2}$ (b) -1 (c) 0 (d) y

- **j**) The value of $\int_{0}^{\pi} \sin mx \sin nx \, dx$ for $m \neq \pm n$ is
- (a) 0 (b) π (c) $\frac{\pi}{2}$ (d) 2π
- **k)** Angle between the vectors 2i+2j-k and 6i-3j+2k is

- (a) $\cos^{-1}\left(\frac{4}{11}\right)$ (b) $\cos^{-1}\left(\frac{4}{21}\right)$ (c) $\sin^{-1}\left(\frac{4}{11}\right)$ (d) $\cos^{-1}\left(\frac{4}{21}\right)$
- 1) div curl $\vec{V} =$ _____ (a) 0 (b) 1 (c) $\vec{0}$ (d) \vec{V}

- **m**) A vector \vec{F} is said to be irrotational if

- (a) $\nabla \times \vec{F} = 0$ (b) $\nabla \cdot \vec{F} = 0$ (c) $\nabla \vec{F} = 0$ (d) None of these

(05)

- **n**) If $\begin{bmatrix} x & 2 \\ 3 & 1 \end{bmatrix}$ is a singular matrix then $x = \underline{\hspace{1cm}}$
- (b) 6

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

- (05)a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix}$ by using determinant method.
- **b)** Evaluate : $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)} dx$
- c) Reduce the matrix $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 9 & 10 & 11 & 12 \end{vmatrix}$ to the normal form and find its rank. (04)

Q-3 Attempt all questions

- a) Find the eigenvalues & eigenvectors of a matrix $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ (05)
- **b)** Solve the following system of equations by Cramer's rule: x+2y-z=3; x+y+2z=9; 2x+y-z=2 (05)
- c) Determine $\int_{0}^{1} \ln x \, dx$ converge or diverges. (04)

Q-4 Attempt all questions

- a) Find the volume common to the cylinder $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$. (05)
- **b)** Find the inverse of the following matrix by using elementary transformation (05)

$$A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 2 & 1 \\ 3 & -2 & 1 & 6 \end{bmatrix}$$

c) Solve: $\frac{dy}{dx} + y \tan x = \sin 2x$, y(0) = 1 (04)

Q-5 Attempt all questions

a) Obtain Row echelon & Reduced row echelon form of the following matrix: (05)

$$A = \begin{bmatrix} 0 & -1 & 2 & 3 \\ 2 & 3 & 4 & 5 \\ 1 & 3 & -1 & 2 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

- **b)** Solve: $\frac{dy}{dx} = 2y \tan x + y^2 \tan^2 x$ (05)
- c) Find the directional derivatives of $\phi = xy^2 + yz^2$ at the point (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$. (04)

Q-6 Attempt all questions

a) Evaluate $\int_C \overline{F} \, d\overline{r}$ where $\overline{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ and C is the rectangle in the xyplane bounded by y = 0, x = a, y = b, x = 0.

b) Evaluate $\iint_{S} \overline{F} \cdot \hat{n} \, ds$, where $\overline{F} = 18z\hat{i} - 12\hat{j} + 3y\hat{k}$ and S is the part of the plane (05)

(04)

2x+3y+6z=12 in the first octant.

c) Solve the system of equation by Gauss-Elimination method.

$$2x + 2y + 2z = 0$$
$$-2x + 5y + 2z = 1$$

$$8x + y + 4z = -1$$

Q-7 Attempt all questions

a) Change the order of integration and evaluate $\int_{0}^{a} \int_{a-\sqrt{a^2-y^2}}^{a+\sqrt{a^2-y^2}} dx \, dy.$ (05)

b) Solve:
$$\left(x + \frac{ay}{x^2 + y^2}\right) dx + \left(y - \frac{ax}{x^2 + y^2}\right) dy = 0$$
 (05)

c) Evaluate: $\int_{-c}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$ (04)

Q-8 Attempt all questions

(07) Verify Green's theorem for $\iint_C [(x-y)dx + 3xy dy]$ where C is the boundary

of the region bounded by the parabolas $x^2 = 4y$ and $y^2 = 4x$.

b) State Cayley-Hamilton theorem and Find the characteristic equation for the (07)

matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$. Also find the matrix represented

by $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I$.

